Presencia de una anfibolita derivada de un MORB en el dominio continental de la banda metamórfica de Aracena (Macizo Ibérico meridional)

Presence of a MORB-derived amphibolite in the continental domain of the Aracena metamorphic belt (southern Iberian Massif)

M. Díaz Aspiroz**, A. Castro*** y C. Fernández**

(*) Departamento de Geodinámica y Paleontología (U. Huelva). Campus La Rábida, Palos de la Frontera, 21819 Huelva
(**) Departamento de Geología (U. Huelva). Campus La Rábida, Palos de la Frontera, 21819 Huelva

ABSTRACT

The La Corte Amphibolites are a part of the medium grade metamorphic series of the continental domain of the Aracena metamorphic belt (AMB). These amphibolites are rich in iron, as it is deduced from the abundance of Fe-rich amphiboles, including grunerites, and metallic minerals as well. According to different characteristics concerning structure, mineral chemistry and whole rock geochemistry, we can suggest that the La Corte amphibolites were not formed from the same protolith that generated the Acebuches amphibolites, in the oceanic domain of the AMB. Multielemental and REE spidergrams allow us to conclude that the La Corte amphibolites formed from an oceanic crust whose characteristics are typical of those of a transitional oceanic basalt (T-MORB).

Key words: Iberian Massif, amphibolites, REE, spidergrams, MORB

Geogaceta, 30 (2001), 39-42
ISSN:0213683X

Introducción

La banda metamórfica de Aracena (BMA) se encuentra situada en el contacto entre las zonas de Ossa-Morena (ZOM) y Surportuguesa (ZSP), en el extremo suroccidental del Macizo Ibérico. De acuerdo con la división propuesta por Castro et al. (1999), en la BMA se distinguen dos grandes dominios: uno de afinidad oceánica al sur (dominio oceánico, DO), y otro septentrional constituído por rocas eminentemente continentales (dominio continental, DC). En el primero de estos dominios se han definido las metabasitas de Acebuches, provenientes de una corteza oceánica (Dupuy et al., 1979; Munch et al., 1986; Quesada et al., 1994; Castro et al., 1996). En el DC se han distinguido dos zonas, una de grado metamórfico bajo a medio al norte, y otra de grado alto al sur (Fig. 1).

El límite meridional de la zona de bajo grado está definido por la serie de grado medio. Esta serie está formada por rocas similares a las encontradas en la zona de alto grado, pero afectadas por un metamorfismo de menor intensidad. Esta diferencia se debe, en parte, al retromorfismo asociado al funcionamiento de una gran zona de cizalla denominada por Díaz Aspiroz (2001) zona de cizalla de Cortegana-Aguafiria (ZCCA). La mayor parte de las rocas de la serie de grado medio son típicamente continentales. Sin embargo, se han encontrado unas anfibolitas (las anfibolitas de La Corte, definidas por Bard, 1969) cuyo protolito pudo ser un basalto oceánico. Estas anfibolitas no se encuentran conectadas estructuralmente con las metabasitas de Acebuches,
como sugieren Bard (1969) y Giese et al. (1994), por lo que la correlación entre ambas es poco probable. En este trabajo se presentan las principales características de las anfibolitas de La Corte y se dis- cutie su posible origen.

Descripción y química mineral

La mayor parte de las anfibolitas de La Corte han sido afectadas por la ZCCA, en cuyo caso presentan un tamaño de grano muy fino, y una foliación milonítica muy penetrativa definida por la orientación de prismas alargados de anfibol, «trenes» de menas, bandas ricas en epidoto y ribbons de plagioclase (Fig. 2). Normalmente, se observan bandas o lenticulos anastomosados preservados de la deformación en los que se encuentra una anfibolita con un tamaño de grano algo mayor y una foliación metamórfica menos penetrativa.

Las anfibolitas cizaladas presentan una paragenésis típica de la transición entre las fácies de las anfibolitas y la de los esquistos verdes:

\[P + Hbl \rightarrow Act + Cum/Grn + Ep + Chl \pm Qtz + menas (I) \]

la cual se impone sobre otra previa de mayor grado metamórfico que queda en evidencia en porfirioclasos y en microlitos de la foliación milonítica. Este evento de retrometamorfismo ya fue definido por Crespo-Blanc (1991), y se encuentra asociado a la actuación de la ZCCA.

La composición de las plagioclasas es bastante constante, y oscila entre una andesina sódica y una oligoclasa cálcica (An_{75-80}). En cuanto al anfibol, es común observar blastos de hornblenda (s.I.) con zonaciones de actinolita y anfiboles ferromagnesianos. Dentro de los blastos de hornblenda se distinguen composicio- nes correspondientes a magnezio- y ferro- hornblenda, ferrotschermakita, edenita, magnesiohastingsita y ferropargasita (Fig. 3). También se han encontrado blastos de actinolita con hábito fibroso. En estas rocas es característica la presencia de clinoanfiboles ferromagnesianos con un Mg # > 0,5, lo cual indica un enriqueci- miento importante en hierro.

Caracterización geoquímica

Para caracterizar geoquímicamente las anfibolitas de La Corte se han realiza- do análisis de roca total en dos muestras de estas rocas. La metodología seguida para la preparación de las muestras y para la realización de los análisis, así como la localización exacta de las muestras se pueden encontrar en Díaz Azpiroz (2001).

De acuerdo con el diagrama de clasifi- cación TAS desarrollado por Cox et al. (1979), con la nomenclatura para rocas vol- cánicas de Le Maitre et al. (1989), las anfibolitas de La Corte se pueden clasificar como basaltos, y presentan un grado de di- ferenciación intermedio (Mg # = 0.56 - 0.63). Su parámetro B (La Roche, 1964) es sensiblemente mayor que el de las anfibolitas de Acebuche, debido a que las anfibolitas de La Corte muestran una ma- yor proporción de minerales fálicos.

Los elementos traza y tierras raras (REE) se han representado en diagramas multielementales normalizados a MORB (según valores de Pearce, 1983) y a condritio (de acuerdo con los datos de Nakamura, 1974). Respecto a MORB (Fig. 4a), las anfibolitas de La Corte pre- sentan un cierto enriquecimiento en LILE, más acentuado Re y Ba. Los conte- nidos en los elementos inmóviles más re- fractarios (desde el P hasta el Cr) son muy similares a los de normalización, por lo que se pueden considerar como valores típicos de N-MORB. Sin embargo, los ele- mentos inmóviles más incompatibles (Th, Nb y Ce) presentan un ligero enriqueci- miento respecto a MORB, lo que es carac- terístico de E-MORB (véase Basaltic Volcanism Study Project, 1981). En consecu- euncía, los patrones de las anfibolitas de La Corte representan un término medio entre un MORB alcalino como el de la dorsal medio-atlántica (Wood et al., 1979), y otro transicional como el del Golfo de Adén (Peercy, 1982).

En la figura 4b se muestra un diagrame- ma de REE normalizado a condritio, en el que se observa que la pauta de variación de las anfibolitas de La Corte presenta concentraciones de REE entre 10 y 30 veces el valor del condritio, lo que implica un grado intermedio de diferenciación entre los basaltos primitivos y los muy evolucionados (e.g., Wilson, 1989). Tam- bién puede apreciarse un ligero enriqueci- miento de las tierras raras ligeras (LREE) respecto a las tierras raras pesa- das (HREE), con valores de (La/Lo), de 2,19 y 2,98. Este enriquecimiento, mucho menos pronunciado que el de los E- MORB, es característico de basaltos thôleíticos de islas oceánicas (OIT, Ocean Island Tholeiite, Wilson, op. cit.) y de MORBs transicionales (T-MORB) entre N- y E-MORBs (Saunders, 1984).

En ambos diagramas, las anfibolitas de La Corte muestran ciertas diferencias respecto a las de Acebuche, cuyos patro- nes se muestran en Castro et al. (1996).

Así, en el diagrama normalizado a MORB (Fig. 4a), las anfibolitas de La Corte muestran un enriquecimiento rela- tivo en Ba y un empobrecimiento relativo en Th, al contrario que las anfibolitas de Acebuche. Por su parte, en el diagrama de REE (Fig. 3b) se observa que una de las muestras está enriquecida, en todas las REE, respecto a la media de las anfibolitas de Acebuche. Además, las anfibolitas de La Corte presentan sendos empobrecimientos relativos en Gd y Er, así como enriquecimientos relativos en Ho y Yb, lo que difiere sustancialmente del patrón plano definido por las anfibolitas de Acebuche.
Discusión y conclusiones

Algunos autores han correlacionado las anfibolitas de La Corte con las de la serie de Acebuches (Bard, 1969; Giese et al., 1994). A la vista de los datos estructurales, de química mineral y de geoquímica, dicha correlación no parece factible. En primer lugar, ambas litologías no se encuentran conectadas mediante ningún antiforme (como sugieren los autores mencionados), ya que las anfibolitas de Acebuches se sitúan en una banda continua de dirección constante ONO-ES (e.g., Quesada et al., 1994; Castro et al., 1996, 1999; Díaz Azpiroz, 2001). Los análisis de química mineral muestran que en la serie de Acebuches no se han encontrado anfiboles ferromagnesianos mientras que en las anfibolitas de La Corte éstos aparecen con cierta frecuencia. Por otra parte, los anfiboles cállicos de las anfibolitas de La Corte son más ricos en hierro que los de la serie de Acebuches, cuyo mineral se encuentran en un Mg # superior a 0,5 (e.g. Bard, 1970; Castro et al., 1996; Díaz Azpiroz, 2001). Por último, aunque geocéntricamente las anfibolitas de la Corte y las de Acebuches presenten similitudes, los estudios de elementos traza y de REE muestran diferencias importantes entre ambas rocas.

Desde el punto de vista geoquímico, las pautas de variación de las anfibolitas de La Corte, tanto en diagramas multielementales respecto a MORB como diagramas de REE respecto a condritio, presentan características típicas de basaltos tholeíticos transicionales (T-MORB) entre N-MORB y E-MORB. Esto prueba el origen oceánico de estas rocas, cuyo protolito pudo haberse formado en un sector anómalo de una dorsal oceánica.

Agradecimientos

Este trabajo es parte de la Tesis Doctoral de Manuel Díaz Azpiroz, a la cual ha sido financiada con una beca FPI del MEC (FP94-522639447), por el proyecto PB94-1085 y por la Universidad de Huelva. Gracias también al Dr. Jesús de la Rosa (U. Huelva) por sus sugerencias sobre geoquímica.

Referencias

