Depósitos coralinos litificados en el Estrecho de Gibraltar

Lithified coral mounds in the Gibraltar Strait

F.J. Izquierdo, M. Esteras y N.G. Sandoval


ABSTRACT

With the results obtained in the various marine campaigns carried out in the Strait of Gibraltar Sill, an area covered with ahermatpic coral mounds and hardgrounds very lithified has been encountered in its central and deepest part (180-300 m). The strong marine currents and the different nature of the waters (Mediterranean and Atlantic) that meet in the Strait play a main role in the development of the deep mounds because they are responsible for the elongated shape and lithification that affect both coral mounds and hardgrounds between them. The term lithoherm, already used in the Strait of Florida, is adopted for these kinds of biogenic sediments.

Key words: Strait of Gibraltar, ahermatpic corals, subsea lithification, lithoherms.

Geogaceta, 20 (2) (1996), 401-404
ISSN: 0213683X

Introducción

Con el objetivo de obtener un conocimiento lo más detallado posible de las áreas por las que discurren las trazas de las diferentes soluciones constructivas propuestas (puente o túnel) para realizar el enlace fijo entre España y Marruecos a través del Estrecho de Gibraltar, se han llevado a cabo una serie de campañas de investigación geofísica, oceanográfica, toma de muestras (1840), sondajes cortos (45 con penetración máxima de 5m), inspección mediante el sumergible tripulado "ARGUS" (17 inmersiones), etc., que han aportado una gran cantidad de información sobre los diferentes aspectos geológicos de la zona. Los estudios se han centrado principalmente en dos sectores que atraviesan el Estrecho de norte a sur (Fig. 1): [1] Corredor de Umbral (zona de menores profundidades, situado al O de Tarifa) y [2] Corredor del monte Hércules (zona de menor distancia entre las costas española y marroquí, al O de Algeciras). En el presente artículo haremos referencia principalmente al Corredor del Umbral ya que ha sido éste el más intensamente investigado.

Geológicamente, la zona se incluye en el denominado Arco de Gibraltar, raso fisiográfico generado por el desplazamiento hacia el O, durante el Mioceno inferior-medio, del Bloque de Albacete sobre los segmentos corticales Sudibélico y Magrebí (Balanyá y García Dueñas, 1988), dando como resultado el aplastamiento de las diferentes unidades situadas en el prisma de acercamiento existente junto al frente bético-rifeño. Las Unidades de Fysh, en las que se incluye la totalidad del Umbral, están constituidas por una serie de mantos de naturaleza fundamentalmente arcillo-calcarea, desde el Cretácico medio hasta el Oligoceno y ariñiscoso-margosa, hasta el Buri galiente, que se caracteriza por similitud de litología en ambos lados del Estrecho. Los materiales presentes en el fondo marino deben corresponder a varias de las unidades reconocidas en las áreas emergidas, según confirman las distintas investigaciones llevadas a cabo. Sin embargo, en los sectores centrales, y más profundos del Um-
bral hay una zona donde no ha sido posible deter-
minar la naturaleza del substrato debido a la pre-
sencia de acumulaciones bioclasticas, principal-
mente corallinas, muy cementadas y encostadas,
de espesor desconocido, que son objeto del pre-
sente articulo.

Fisiografía y dinámica marina

El Umbral del Estrecho de Gibraltar conecta las plataformas español y marroquí con una di-
rección aproximada N-S, presenta una eleva-
tión topográfica en relación con las áreas que lo
 bordean cuyas profundidades llegan a alcanzar
más de 500 m en la zona oriental y hasta 630 m en
la occidental (Hoyas de Levante y Poniente res-
pectivamente), si bien a mayores distancias tanto
hacia el mar de Alborán como hacia el Atlántico
son muy superiores. Los fondos mísmos en el
Umbral son de 90 m (monte de Seco) en el sector
septentrional, 150 m (monte Tortosis) en la parte
central y 200-250 m (Cresta de Knorr) en la me-
ridional mientras que las profundidades máxi-
mas se alcanzan en la zona central con más de
300 m. Por su parte, el monte Hércules se en-
contrar en la denominada Cresta Central del
Estrecho, una elevación alargada y orientada en
dirección E-O con cotas que alcanzan los 450 m
desde los 650 m de su base.

El Estrecho de Gibraltar posee una gran sin-
gularidad oceanográfico debido a su ubicación
en la zona de confluencia de las aguas de origen
atlántico (temperaturas entre 13,5 y 16°C y soli-
nidades inferiores al 37%) y las del Mediterrá
neo occidental (temperaturas medias inferiores a 12,9
°C y salinidades por encima del 37%). La distin-
ta naturaleza de ambos masas de agua provoca su
diferenciación por densidades dando lugar a un
flujo de salida, en profundidad, de las aguas me-
diterráneas hacia el O y otro de entrada, en super-
ficie, de las atlánticas hacia el E originándose in-
tensos procesos de mezcla en la interface. Este
hecho unido al efecto que en el área tienen las
marcas oceanicas provoca la existencia de fuentes
corrientes marinas cuyas máximas velocidades
pueden llegar a alcanzar 2,5 m/s en el fondo y aun
mayores en superficie. Por otra parte, debido a las
variaciones de los gradientes geostroficos con
los ciclos mareales en el Estrecho las corrientes
sufran importantes oscilaciones tanto en sentido
como en módulo. Hay que destacar que es prece-
sante en las zonas del Umbral y del monte Hé-
cules donde las corrientes son máximas ya que es
en ellas donde las secciones hidrodinámicas son míni-
mas, en un caso por poseer las menores profun-
didades y en otro las menores anchuras.

Características de las formaciones corallinas

Las campañas de investigación realizadas en
el Estrecho de Gibraltar han revelado la presencia
en ciertas zonas de un recubrimiento constituido
por acumulaciones bioclasticas, principalmente
corallinas, generalmente muy cementadas y de
espesor desconocido sobre las que crecen orga-
nismos vivos de la misma naturaleza, así como un
encostamiento generalizado sobre todo tipo de
substratos que afecta a un área más extensa.

Con los resultados obtenidos se ha elaborado
una detallada cartografía geológica (Sandoval et
al., 1996) en la que ha sido posible determinar
con exactitud la distribución de las formaciones
biogénicas, quedando limitadas, en el Umbral, a
la franja situada entre las coordenadas U.T.M.
3,976,000 / 3,984,000 de latitud y 247,000 / 255,000
de longitud donde las profundidades oscilan entre
150 y más de 300 m, mientras que en el monte Hércules parecen cubrir toda la zona
investigada.

La morfología de las áreas cubiertas por este
tipo de sedimentos (deducida por batimetría de
detalle y sonar de barrido lateral) es muy irregu-
lar. Sobre un fondo relativamente plano se elevan
montículos de varios metros de altura y decenas
de longitud (Fig. 2), suelen tener forma alargada,
con el eje mayor orientado según la dirección de
la corriente predominante (E-O). Aparecen cubi-
ertos por organismos vivos (corales, briozoos,
balanos, esponjas, etc.) o muros, pero en posi-
ción de vida, cuya distribución varía según la
profundidad y orientación respecto a las corrien-
tes marinas. En las zonas donde la estructura in-
terna de los montículos es reconocible se aprecia
una gruesa estratificación en capas de varios
centímetros de espesor desigualmente cementa-
das. Los testigos y muestras obtenidas (Fig. 3)
indican que se trata de conglomerados bioclastí-
cos, principalmente de corales aheutomáticos,
tanto reñidos como solitarios con proporcio-
nes variables de fragmentos de briozoos y bala-
ños, en general poco o nada rostados. La compo-
sición de la matriz oscila entre los tamaños arena
y arcilla siendo destacable un fraccionamiento de
barro micrítico probablemente originado por la
precipitación directa de calcita rica en Mg. El porcentaje
de matriz es variable lo que hace que la porosidad
sea también muy irregular, con zonas en las que
es prácticamente nula y sólo existe la de origen
módico y otras en las que ocupa un importante
volumen de la roca. Es común la presencia de
granos vacuolados o huecos de origen deposicio-
nal tapizados por cemento calcáreo. El grado de
 cementación es normalmente alto variando en
relación directa con el porcentaje de matriz útil y
como se ha observado en algunos testigos que
han atravesado varias de las capas antes aludidas,
esta da lugar a una alternancia entre niveles de
mayor y menor grado de cementación, al cortar
varías de ellas. En los límites entre capas sucesi-
vables se aprecian, en algunos casos, superficies
oscarsadas por alteración y precipitación de óxidos de Mn, de aspecto similar al que pre-
sente el fondo marino actual.

Las áreas situadas entre los montículos son
relativamente planas aunque de microbatimetría
irregular, están formadas por sedimentos tam-
bien bioclasticos en los que el esqueleto está prin-
cialmente compuesto por fragmentos de corales y de roca de litología diversa cuyo tamaño varía desde microconglomerado a arenoso (inferior, por tanto, al de los montículos), poseen un mayor grado de rodadura y porcentaje de matriz y menor porosidad. La litificación y encostamiento en estos sedimentos es muy importante. Este tipo de fondos suele estar desprovisto de sedimentos no consolidados si bien se producen grandes acumulaciones de grava bioclástica en zonas depresivas o al abrigo de las corrientes junto a los montículos (Fig. 4). La superficie presenta, a pequeña escala, una gran irregularidad debido a los procesos de disolución y erosión que han actuado, a pesar del importante encostamiento existente. Destaca la presencia de pitáridas oscuras de óxidos (probablemente de Fe y Mn). Todo este conjunto de características son las típicas de fondos endurecidos o "hardgrounds" originados por la actuación simultánea de procesos de disolución, erosión, encostamiento, litificación y actividad orgánica. El espesor no es desconocido, si bien en algún sector han sido adivinados en su totalidad (<5 m) hasta alcanzar el substrato de flysch.

Al microscopio los depósitos de montículos varían entre calizas bioclásticas conglomeradas (tanto matriz como cistao-soportadas) y arenosas, en general clasificables como biomicrites. Cuando el esqueleto está constituido por fragmentos grandes de corales la matriz arenoso-marga nosa contiene porcentajes de hasta un 30% de cuarzo además de cantidades variables de fragmentos de roca de las diferentes litologías de flysch presentes en el área. Los bioclástos pertenecen en su mayor parte a corales arenomorfos, con claro dominio de los ramificados sobre los solitarios. Es frecuente la presencia en la matriz de restos rodioloides de tamaño alga de algas corallinas (rodofóreas), que indican un aporte de sedimentos desde las plataformas o desde áreas elevadas como el monte Tarteso; ya que este tipo de organismo únicamente habita en áreas someratas dentro de la zona fótica. Abundan en la matriz los restos de diversos foraminíferos planctónicos.

Los análisis del cemento, realizados por difracción de rayos X y microscopio electrónico, muestran que se trata de agregados cristalinos micríticos de calcita con alto contenido en Mg (origen típicamente marino). La intensa cementación calcaria es un proceso de fundamental importancia y muy extendido en todo el área del Umbral, es el responsable de la litificación tanto de los depósitos bioclásticos de las zonas centrales como de los sedimentos de talud y borde de talud reconocidos en varias de las inmersiones efectuadas por el "ARGUS" en tomo a las plataformas.

Tipos de organismos y edades

La clasificación de los corales y briozoos recogidos en muestras y sondeos (Alvarez, G et al., 1995) indican la existencia de formas ramifi cadas coloniales tales como Madrepora oculata, Lophelia pertusa y Dendrophyllia coriugera, etc., todas ellas ya reconocidas en otras partes del Mediterráneo occidental y Atlántico norte. Se trata de corales arenomorfos que suelen habitar a grandes profundidades (entre 150 y 1000 m) y en aguas relativamente frías (Teichert, C., 1958). Juntos ellos aparecen formas solitarias (Caryophyllia cyathus, Desmophyllum cristagalli, etc.) también arenomorfos, pero de menor profundidad. Respecto a los briozoos, dominan en las aguas profundas las formas erectas rígidas firmemente unidas al substrato rocoso y en las someras los tipos flexibles. En las inmersiones efectuadas se observó la abundancia de balanzas seí sles, su clasificación no se ha realizado, pero parecen pertenecer al género Favosica, típico de aguas profundas y agitadas. Además de los organismos descritos existen en la área cubiertas por acumulaciones y costas bioclásticas, aunque en menor proporción, esponjas, gasterópodos, hidrozoos y ophiurius. Un hábitat tan rico en nutrientes favorece la abundancia de peces por lo que constituyen zonas de pesca preferente en el entorno del Estrecho de Gibraltar.

En tres de los testigos obtenidos en la zona central del Umbral (260-280 m), correspondientes a conglomerados bioclásticos, se han realizado seis dataciones mediante C14, que indican edades que oscilan entre 22.000 y 34.000 años para los fragmentos de corales analizados. Estas edades se corresponden con el último período glacial, si bien es claro que la litificación es un proceso activo en la actualidad, aunque con menor intensidad.

Discusión y conclusiones

La existencia de acumulaciones bioclásticas, principalmente de corales arenomorfos con importantes grados de cementación en aguas profundas ha sido descrita en otras partes del mundo como el Estrecho de Florida (Neumann et al., 1977) o el Atlántico norte (Teichert, 1958, las citas en las costas de Noruega). En estas zonas se han reconocido montículos de hasta 50 m de altura rodeados por fondos encostados, que en el Estrecho de Florida se han denominado litotermos. Los litotermos no se consideran bioconstrucciones en sentido estricto sino acumulaciones biogénicas litificadas in situ, por debajo de la zona fótica, por lo que no parece un término apropiado para definir el tipo de depósitos presentes en el Estrecho de Gibraltar, cuyo Umbral, y en concreto sus zonas más profundas, reúne una serie de condiciones que le hacen apto para el desarrollo de litotermos y hardgrounds.

El modelo genético propuesto para la creación de este tipo de depósitos (Mullineaux, 1981) consiste en el desarrollo de una secuencia de estructuras que se inician con la formación de colonias corallinas simples y súlidas sobre fondos encostados. La unión de varias de ellas da lugar a un aumento de la complejidad y diversidad biológica, que provoca el progresivo crecimiento de la colonia por la acumulación de los fragmentos esqueléticos, que constituyen el substrato de nuevos organismos y que actúan como una malla que atopa sedimentos más finos ya sean bioclásticos o ícticos. En el estudio final se llega a la formación de litotermos s.s. en los cuales sobre una estructura constituida por
Fig. 4. - Grava muy poco rodada de fragmentos de corales, briozos y balanus, acumulada junto a un depósito bioclastico litificado. La matriz suele estar constituida por arena y fango calcáreo en fase de consolidación. Foto tomada por el "ARGUS" (prof. 346 m) al O de la meseta central.

Fig. 4. - Not very rounded gravel of coral, briozos and balanus debris, accumulated beside a lithified bioclastic deposit. The matrix is usually made up of sand and carbonatic mud in phase of consolidation. Photo taken by "ARGUS" west of the central mesa (depth: 346 m).

fragmentos de varias generaciones de corales muertos y de varias decenas de metros de espesor se desarrollan colonias vivas de corales y otros organismos bentónicos como briozos, balanus, ophiiuros, etc. adaptados a fondos duros y de alta energía. La morfología de los montículos se debe a la actuación de las corrientes oceanicas, que dan forma elongada, paralela la dirección de

lamism, a una acumulación que en principio debería ser semiesférica. La potencia de los litófermos en el Estrecho no se conoce con precisión, pero superan los 5 m (máxima longitud perforada en las campañas de sondeos), alcanzando su máximo desarrollo en la meseta ubicada al sur del monte Tatusos (Fig. 1).

En el desarrollo de estas estructuras juegan un papel fundamental la litificación submáxima, cuyos mecanismos no son aún bien conocidos, pero que en el Estrecho de Gibraltar deben estar relacionados con la compleja dinámica marina existente. Como ya se ha indicado, en profundidad existe una masa de agua de origen mediterráneo, fría y de alta salinidad, que al llegar a las proximidades del Umbral se ve forzada a ascender desde las grandes profundidades a que se encontraban en el mar de Alborán, con el consiguiente descenso de presión y aumento de la temperatura (lo mismo podría decirse de la parte alta del monte Hércules). Este hecho, unido a los intensos procesos de mezcla que tienen lugar en la interfase con la lámina de agua atlántica que circula en superficie hacia el E, deben provocar una disminución de la solubilidad de la calcita con la consiguiente precipitación del carbonato en forma de cristales de micrón de alto contenido en Mg. Este proceso probablemente ocurra próximo a la interfase agua-sedimento dando lugar a la litificación de las acumulaciones bioclasticas para formar litófermos, donde están presentes y "hardgrounds" donde no las hay. La litificación a pesar de las edades determinadas en los corales, parece ser un proceso activo en la actualidad, ya que se ha observado la existencia de fangos micriticos en la matriz de gravas bioclasticas sueltas en fase de consolidación tanto en el Umbral como en el monte Hércules, además, la presencia de sucesivas capas dentro de los montículos indican que se trata de un fenómeno más epitolítico que continua, asociado a cambios en los factores que inducen la precipitación del cemento calcíceo.

Agradecimientos

Al Dr. K.M. Shishelev, del Instituto de oceanografía PP. Shirshov de la Academia de Ciencias de Rusia y toda la tripulación del "ARGUS" por su espíritu científico.

Referencias