**Columna sintética mostrando la distribución vertical de los icnofósiles**

### Contribución del análisis icnológico en la interpretación del origen de la rítmica margoso-calcárea de edad Kimmeridgiense inferior (Zona Platynota) en el Prebético Central

**F. Olóriz y F. J. Rodríguez-Tovar (*)**


**ABSTRACT**

*In the Central Prebetic the sediments of Early Kimmeridgian age (Platynota Chron) are represented by rhythmic successions which are made up by marls, marly limestones and limestones. In the context of an integrated research programme and in order to analyze the sedimentary cyclicity it is proved the significance of ichnologic studies to reveal the existence of secondary overprint which determines the location of the boundary in marly-limestone couplets as they are recognizable at the outcrop.*

**Key words:** Ichnologic studies, rhythmic successions, secondary overprint, Early Kimmeridgian (Platynota Chron), Central Prebetic.

*Geocacta, 12 (1992), 105-107.*

**ISSN:** 0213683X

**Introducción**

La relación que ha podido ser establecida, en algunas ocasiones, entre las alternancias rítmicas caliza-marga y las variaciones climáticas (ciclos de Miánkovich) causadas por oscilaciones en los parámetros orbitales, ha incrementado el interés por este tipo de sucesiones litológicas en alternancia (Eisense & Seilacher, 1983; Berger et al., 1984; Eisense et al., 1991). Sin embargo, en el estudio detallado de la rítmicidad de los sedimentos es necesario un minucioso análisis que ponga de manifiesto la posible distorsión de la señal propia de fenómenos globales por la interacción de factores locales, tanto primarios (velocidad de sedimentación alta, inestabilidad de los fondos, etc.)
estratigráfica), como origen secundario (meteorización y diagénesis); estos últimos, como ha sido demostrado por Rickson (1986) para los procesos diagénéticos, pueden alterar el modelo de la sedimentación primaria llegando incluso a dar lugar a una rítmicidad de origen secundario.

El presente estudio ha sido realizado en 5 secciones de edad Kimmeneidgiense inferior (Zona Platynota) que se han seleccionado en el sector central del dominio Prebético (Zonas Extranas de las Cordilleras Béticas). Las sucesiones estudiadas pueden ser consideradas representativas de la sedimentación terrigene-carbonatada, propia del medio de plataforma que caracterizó al dominio Prebético durante el Kimmeneidgiense inferior (Zona Platynota). Las sucesiones seleccionadas, en Puerto Lorente y Segura de la Sierra (fig. 1), pertenecen respectivamente a los dominios Prebético Externo e Interno (Jerez-Mir, 1973).

Desde el punto de vista litológico las sucesiones se caracterizan por una alternancia de margas, margocalizas y calizas. En líneas generales destacan las potentes intercalaciones margosas (hasta 4 m de espesor) que existen tanto a muro como hacia la parte media o superior de los perfiles de Puerto Lorente y Segura de la Sierra respectivamente. Entre ambas intercalaciones margosas de muro y techo se reconoce una sucesión de niveles margocalizas y calizas de espesor individual medio en torno a 20 cm, entre las que se intercalan finas pasadas de material de aspecto más margoso.

En un estudio de estas características ha adquirido gran importancia la detallada temporización de la Zona Platynota (Kimmeneidgiense inferior) que ha sido obtenida en ambas secciones (Olóriz & Rodríguez-Tovar, 1991).

Con el fin de reconocer la incidencia de los fenómenos de carácter global en la organización de la estratificación, se procedió al análisis detallado de ambos perfiles. El control de la presencia de estructuras sedimentarias, de las intercalaciones margosas y de las variaciones minerales significativas, evidencia cierta inestabilidad local de los fondos e incluso interacciones entre la textura y la dinámica estratigráfica (Marqués et al., 1991; Olóriz et al., 1991). En cuanto a la sobreposición de fenómenos secundarios, uno de los aspectos que ha sido de más utilidad para su caracterización ha sido el estudio iocnológico.

**Fig. 1.—Localización geográfica, esquema geológico y sucesiones lito- tólogicas referidas en el texto. En la parte inferior derecha, esquema de sucesión elemental con la distribución de la asociación de Chondrites dominante.**

**El hecho de que una misma asociación de Chondrites atraviese sin cambio aparente el límite entre dos capas de litología diferente (marga/margocaliza o margocaliza) evidencia que no existieron diferencias notables en la composición y/o textura del sedimento colonizado por los anfibóps de yaco pequeño artrópodos que produjeron las trazas de Chondrites. Según esto, la apariencia actual del relevo caliza-marga puede ser consecuencia de la existencia de fluctuaciones en la distribución original de los carbonatos en el sedimento, las cuales, previsiblemente estarían causadas por procesos de disolución y reprecipitación secundaria.**

El tratamiento integrado de datos procedentes de análisis palaeontológicos, estratigráficos, mineralógicos y tafonómicos, junto con los datos iocnológicos mencionados, han puesto de manifiesto que la sobreposición secundaria reconocida no ha sido lo suficientemente intensa como para generar la rítmicidad que se observa a lo largo de las sucesiones estudiadas (Olóriz et al., 1991). Sin embargo, esta sobreposición, junto con la interacción de fenómenos locales, ha podido distorsionar en grado variable la señal propia de fenómenos de carácter global lo cual debe tenerse en cuenta cuando se trate de temporizar la ciclicidad en las sucesiones analizadas.

Agradecimientos

El presente trabajo ha sido realizado gracias a la financiación del Proyecto PB2017 (CSIC) y del grupo EMMI (Junta de Andalucía).

Referencias


Fig. 2—Distribución de trazas fósiles en la secuencia elemental: a) Estructura de la secuencia elemental con parte inferior margosa, parte media margocaliza y parte superior con nivel calizo bien diferenciado, b) Detalle de la parte inferior desprovista de trazas fósiles macroscópicamente reconocibles, c) Detalle de la parte media con bioturbación de Chondrites dominante, d) Detalle de la parte superior en la que se muestra el muro del nivel calizo con la persistencia de la asociación de Chondrites dominante y la disminución de trazas macroscópicas de bioturbación hacia techo.

Estructuras bioturbadas de las facies Muschelkalk de la Zona Subbética

Bioturbate structures of the Muschelkalk facies in the Subbetic Zone

A. Pérez-López (1)
Departamento de Estratigrafía y Paleontología, Facultad de Ciencias, Campus de Fuentenueva, 18002-Grenada.

ABSTRACT

In Majanillos Formation (middle-upper Ladinian age) of the Subbetic Zone, the bioturbate textures are related with deep ramp facies. The Thalassinoides trace fossil is placed in the middle levels of the formation corresponding to lagoon facies (low energy). And the Diplocaulidion, Rhizocorallium and Chondrites trace fossils are related with the shallower facies of a restricted zone.

Key words: Triassic, Muschelkalk, Subbetic, Trace fossil.

ISSN: 0213683X